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Abstract 

Surface solar radiation (SSR) is an essential factor in the flow of surface energy, enabling accurate 

capturing of long-term climate change and understanding the energy balance of Earth's atmosphere 

system. However, the long-term trend estimation of SSR is subjected to significant uncertainties due to 

the temporal inhomogeneity and the uneven spatial distribution of the in-situ observations. This paper 20 

develops an observational integrated and homogenized global-terrestrial (except for Antarctica)) 

stational SSR dataset (SSRIHstation) by integrating all available SSR observations, including the existing 

homogenized SSR results. The series are then interpolated in order to obtain a 5°×5° resolution gridded 

dataset (SSRIHgrid). On this basis, we further reconstruct a long-term (1955-2018) global land (except for 

Antarctica) SSR anomalies dataset with a 5°×2.5° resolution (SSRIH20CR) by training improved partial 25 

convolutional neural network deep learning methods based on the reanalysis 20CRv3. Based on this, we 

analysed the global land (except for Antarctica) /regional scale SSR trends and spatiotemporal variations: 

the reconstruction results reflect the distribution of SSR anomalies and have high reliability in filling and 

reconstructing the missing values. At the global land (except for Antarctica) scale, the decreasing trend 

of the SSRIH20CR (-1.276±0.205 W/m2 per decade) is slightly smaller than the trend of the SSRIHgrid (-30 

1.776±0.230 W/m2 per decade) from 1955 to 1991. The trend of SSRIH20CR (0.697±0.359 W/m2 per 

decade) from 1991 to 2018 is also marginally lower than that of the SSRIHgrid (0.851±0.410 W/m2 per 

decade). At the regional scale, the difference between the SSRIH20CR and SSRIHgrid is more significant 

in years and areas with insufficient coverage. Asia, Africa, Europe and North America cause the global 

dimming of the SSRIH20CR, while Europe and North America drive the global brightening of the 35 

SSRIH20CR. Spatial sampling inadequacies have largely contributed to a bias in the long-term variation 

of global/regional SSR. This paper's homogenized gridded dataset and the Artificial Intelligence 

reconstruction gridded dataset (Jiao and Li, 2023) are all available at 

https://doi.org/10.6084/m9.figshare.21625079.v1.  
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1 Introduction 

Energy flows at the Earth's surface play an essential role in climate change and human activity and link 

to physical processes such as global warming, glacier retreating, hydrological cycle, and carbon budget 

(Hoskins and Valdes, 1990; Peixoto et al., 1992; Trenberth and Fasullo, 2013; Wild, 2012). As a critical 

factor characterizing surface energy flows, Surface Solar Radiation (SSR) largely determines the climatic 45 

conditions and ecological environment in which we live. Therefore, a more accurate and comprehensive 

analysis of the SSR fluxes will help better understand the Earth's atmospheric system. In-situ 

observations provide the most accurate baseline data for measuring SSR. They allowed for the first time 

the detection of decadal changes in SSR known as “dimming and brightening” (Wild et al., 2005), 

especially considering that they cover a longer period concerning another type of data like for example 50 

satellite data (Pfeifroth et al., 2018) even if observational data often have uneven distribution and missing 

data with respect to the satellite data, especially in areas with complex orography (Manara et al., 2020). 

The sources of in-situ SSR observations are mainly collected from the Global Energy Balance Archive 

(GEBA) (Wild et al., 2017) and the World Radiation Data Centre (WRDC) (Tsvetkov et al., 1995). 

Furthermore, other SSR station series are obtained from the high quality Baseline Surface Radiation 55 

Network (BSRN) (Driemel et al., 2018) and the data centres of individual national hydrometeorological 

services. However, two issues still need to be addressed: 1) the inhomogeneity of station data resulting 

from station relocations and instrumentation changes severely impacts the climate change assessment. 

For the regions with a relatively high density of stations, like Europe (Manara et al., 2019; Manara et al., 

2016; Sanchez-Lorenzo et al., 2013a; Sanchez-Lorenzo et al., 2015; Sanchez-Lorenzo et al., 2013b), 60 

Japan (Ma et al., 2022) and China (Ju et al., 2006; Wang, 2014; Wang et al., 2015; Wang and Wild, 2016; 

Yang et al., 2018b; You et al., 2013), much previous work has redefined the degree and timing of 

“dimming and brightening” by addressing the inhomogeneity of the SSR data series. For example, in 

Spain, the average annual homogenized SSR series has a significant increasing trend (+ 3.9 W/m2 per 

decade) during the 1985–2010 period (Sanchez-Lorenzo et al., 2013a). The period of dimming observed 65 

in Italy’s homogenized SSR series is not apparent in the 1960s and early 1970s when the raw series 

(inhomogenized) are taken into account (Manara et al., 2016). The direct measurements of SSR show a 

level trend from 1961 to 2014 over Japan, while their homogenization series display a decreasing trend 

(0.8-1.6 W/m2 per decade) (Ma et al., 2022). In China, homogenization largely eliminated the dramatic 
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non-climatic rise of the early 1990s and also reduced the increasing trend from 1990 to 2016 (Yang et 70 

al., 2018b). However, most of the research was still limited to regional scales. 2) The issue of limited 

spatial sampling of long observational stations and their uneven distribution especially over areas with 

complex orography. Considerable efforts have been devoted to filling in/interpolating the missing values 

in climate datasets ("spatial analysis") (Collins, 1996; Erxleben et al., 2002; Scudiero et al., 2016). The 

traditional spatial interpolation methods commonly used include Inverse Distance Weighted (Fisher et 75 

al., 1993; Shepard, 1968), Kriging (Krige, 1951), Thin-Plate Splines (Bookstein, 1989) et cetera. Since 

the 1980s, physical parametric interpolation (Feng and Wang, 2021; Tang et al., 2019) and Bayesian 

fusion schemes (Aguiar et al., 2015) based on multi-source observational data were widely used, when 

the emergence of highly accurate and relatively precise satellite data. However, the resulting fusion 

datasets cover a too short period to investigate their decadal and multi-decadal variations and to study 80 

the underlying causes. The rise of deep learning and big data techniques has brought about an explosion 

of artificial intelligence (AI). Machine learning is increasingly being used in spatial interpolation, such 

as the spatial reconstruction of surface temperature datasets (Huang et al., 2022; Kadow et al., 2020; Cao 

et al., 2022), the spatial and temporal reconstruction of turbulence resolution (Fukami et al., 2021), etc. 

Furthermore, it shows high accuracy and low uncertainty in reproducing and predicting SSR (Leirvik 85 

and Yuan, 2021; Tang et al., 2016; Yang et al., 2018a; Yuan et al., 2021). However, long-term 

homogenized SSR datasets with global terrestrial coverage have yet to be developed, resulting in 

significant uncertainties in assessing global SSR variation (Jiao et al., 2022). 

Therefore, developing a more homogeneous and comprehensive global long-term SSR climatic dataset 

that provides a better benchmark for observational constraints on the global surface energy 90 

balance/budget remains a valuable and challenging task. This paper first homogenizes and grids the most 

extensive collection of available global SSR station observations. Then, the missing grid boxes/years are 

spatially interpolated using a convolutional neural network (CNN) approach to obtain a globally covered 

land surface SSR anomalies dataset. Finally, the reconstructed datasets are initially analysed and 

evaluated. Thus, the paper is divided into seven main sections. The data resources are introduced in 95 

Section 2. Section 3 presents the data homogenization, and the CNN model reconstruction methods. The 

data homogenization and verification are shown in Section 4. Section 5 gives the AI reconstruction results. 

Section 6 is the availability of the datasets. Conclusions are provided at the end of the paper.  
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2 Data 

Nine SSR datasets are collected to derive the global SSR variable. In particular, six datasets contain data 100 

from observational stations (Section 2.1): two global ground-based measurement datasets (GEBA, 

WRDC) and four homogenized products at regional and country levels (Europe, China, Japan and Italy). 

Three of the adopted datasets are reanalysis data (Section 2.2.1): ERA5, 20th Century Reanalysis version 

3 (20CRv3) reanalysis data and the Coupled Model Intercomparison Project Phase 6 (CMIP6) historical 

simulation output (125). Specifically, the ERA5 data are used to fill the data over oceans and Antarctica 105 

(Section 3.2.1), 20CRv3 data and CMIP6 simulations are used for the AI model training (Section 5.1) 

and reconstruction. All have been listed in Table 1. 

2.1 In situ observational Data 

2.1.1 Global datasets 

There are two main sources of raw SSR data (see Table 1): the ETH Zurich GEBA with monthly data 110 

from 2,445 globally distributed stations, starting from 1922 until 2020, and the WRDC dataset with 

monthly globally distributed data from 1136 stations since 1964. The first one is available for download 

at https://geba.ethz.ch (Last access: 2022.7. 2). The second one published the first SSR radiation balance 

data in 1965 and then its publication has been issued four times a year since 1993 and is available for 

download at http://wrdc.mgo.rssi.ru/ (Last access: July 2021).  115 

2.1.2 National (regional) homogenized station datasets 

1) Chinese homogenized SSR dataset 

The China Meteorological Radiation Fundamental Elements Monthly Value Data Set has been 

downloaded at http://www.nmic.cn. The homogenized SSR dataset in China is released by the National 

Meteorological Information Centre (NMIC), China Meteorological Administration (CMA) (Yang, 2016). 120 

The data are available for the period between Jan 1950 to Dec 2014, and the follow-up data are extended 

with raw observations from NMIC. They used the sunshine duration (SSD) data from nearby stations to 

construct an arguably better reference to identify inhomogeneities in the SSR data. Then, a combined 

metadata and the maximum penalty t-test (PMT) method was used to detect the change points. Finally, 

they were adjusted by a quantile matching (QM) algorithm (Wang and Feng, 2013). The final 125 

homogenized SSR station dataset was converted to gridded data using the first difference method (FDM 
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(Peterson et al., 1998)) and is available for download at http://www.nmic.cn. Last Access: September 

2022. 

2) Japanese homogenized SSR dataset 

Ma et al. (Ma et al., 2022) released a Japanese SSR homogenized dataset in 2022 spanning the period 130 

between 1870 and 2015. First, they homogenized SSD based on PMF (penalized maximal F test) and 

QM algorithms. They then used the homogenized SSD from the previous step as a reference series, 

combined with metadata and PMT, to detect change points. Finally, they adjusted the change points by 

the QM algorithm. For more details on data descriptions, the adopted methodology and downloading 

data refer to https://data.tpdc.ac.cn/en/data/45d73756-3f5a-4d27-82a4-952e268c20e8/, Last Access: 135 

March 2022. 

3) European homogenized SSR data 

A homogenized dataset of European SSR stations was developed by Sanchez-Lorenzo et al. (Sanchez-

Lorenzo et al., 2015) and is currently available as a full public download at 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015JD023321. They selected the 56 longest 140 

Central European SSR series available in GEBA dataset with data for the period comprised between 

1922 and 2012. They adjusted them to ensure temporal homogeneity homogenizing the data with the 

Standard Normal Homogeneity Test (Alexandersson, 1986) and the Craddock test (Craddock, 1979). 

4) Italian homogenized SSR dataset 

The Italian homogenized SSR datasets are those published by (Manara et al., 2019; Manara et al., 145 

2016). As candidate stations to use as reference series, they selected the ten series located in the same 

area of the series to be tested and that series correlate well with the test one. In particular, they tested the 

change points with the Craddock test (Manara. et al., 2017) and when a break is identified by more than 

one reference series the preceding portion of the series is corrected, leaving the most recent portion 

unchanged. In this way, the SSR stations were homogenized, and then the missing values were 150 

interpolated.  

2.2 Other datasets 

2.2.1 Reanalysis 

ERA5 can be used to fill in SSR data from the oceans and Antarctica and carry out the global 

reconstruction, taking into account its high spatial resolution and reliable performance of SSR (Jiao et 155 
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al., 2022; Liang et al., 2022). After the reconstruction, we removed the data for the ocean reanalysis and 

maintain the data only in the land area (except for Antarctica). In addition, two SSR data products 

(20CRv3, CMIP6) are used to train AI models. These are: 

1) ERA5 (space-filling data): ERA5 is the fifth generation of the European Centre for Medium-Range 

Forecasting reanalysis product, which currently publishes data from 1950 to the present (Hersbach et al., 160 

2020). In addition, ERA5 has an hourly output and an uncertainty estimate from the ensemble. The data 

is based on the Integrated Forecasting Model Cy41r2 run in 2016, which contains a 4D-Var assimilation 

scheme. In ERA5, SSR is obtained from a Rapid Radiation Transfer Model (RRTM) (Mlawer et al., 

1997). The present study utilizes monthly SSR data for the period 1955-2018 from ERA5 with a 

resolution of 0.25 ° ×0.25 °  (last accessed in July 2022). It can be downloaded at 165 

https://cds.climate.copernicus.eu 

2) 20CRv3 (data for AI model training): The 20CR Project is an effort led by NOAA's Physical 

Sciences Laboratory and CIRES at the University of Colorado, supported by the Department of Energy, 

to produce reanalysis datasets spanning the entire 20th century and much of the 19th century (Slivinski 

et al., 2019). 20CR provides a comprehensive global atmospheric circulation data set from 1850 to 2015. 170 

Its chief motivation is to provide an observational validation dataset, with quantified uncertainties, for 

assessing climate model simulations of the 20th century. 20CR uses an ensemble filter data assimilation 

method which directly estimates the most likely state of the global atmosphere every three hours and 

estimates the uncertainty in that analysis. The most recent version of this reanalysis, 20CRv3, provides 

8-times daily estimates of global tropospheric variability across 75 km grids, spanning 1836 to 2015 175 

(with an experimental extension from 1806 to 1835). The present study uses monthly SSR data of 

20CRv3 (NOAA/CIRES/DOE 20CR, 80 members) from 1955-2015. The SSR of 20CRv3 has a spatial 

resolution of 0.7°×0.7° (Last accessed: May 2022). The download is available at 

https://portal.nersc.gov/archive/home/projects/incite11/. 

2.2.2 CMIP6 models output 180 

3) CMIP6 models output (data for AI model training): the Coupled Model Intercomparison Project, 

driven by the World Climate Research Program, is now in its 6th phase. Compared to previous model 

comparison projects, the CMIP6 project has a much better experimental design and more model 

development centres involved, as well as providing a much more significant amount of data. It provides 
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an excellent resource for studying current and future climate change (Eyring et al., 2016). The historical 185 

simulations of CMIP6 are designed to reproduce observed climate and climate change, constrained by 

radiative forcing. Its historical simulation spans between 1850 and 2014. In this study, we selected 125 

members from historical simulations of a large sample (a total of 507 members). These 125 members 

match better with the in-situ observations than the other (507-125) members. We selected the monthly 

downward shortwave radiation from 1955 to 2014 (see Table S1 in the Supplemental Material (SM)). 190 

Last access July 2022. Download at: https://esgf-node.llnl.gov/search/cmip6. 

3 Methods 

3.1 Data Quality Control (QC) and homogenization 

The SSR data homogenization method is only applied to the two inhomogenized in-situ observations 

datasets (GEBA and WRDC). The Quality Control (QC) and homogenization flowchart (Figure 1) is 195 

divided into three steps: 1. QC; 2. Homogenization; 3. Integration and consolidation. 

3.1.1 QC 

The QC of SSR data includes the following steps: 

1) Simple integration: integration of the GEBA (2445) and WRDC (1136) datasets removing stations 

with no data and leaving 2681 stations. 200 

2) Removing duplicate stations: a. Stations with similar latitude and longitude. We consider two 

stations with totally identical latitude and longitude to be the same station; b. Stations less than 10km 

apart. We averaged the duplicate stations in this a and b case; c. Special duplicate stations: Stitching 

together data of the duplicate stations based on metadata from CMA. 

3) Remove stations or years/months for which a climatic analysis cannot be established: we remove 205 

stations with records of less than ten years and values more than five times the standard deviation of the 

SSR anomalies. 

4) Candidate stations (487) with a record length greater than 15 years in the period 1971-2000 are 

selected. We added stations (715) with more than 10 years of SSR records to increase the number of 

available stations for a better homogenization of the candidate stations (Figure 2). 210 
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3.1.2 Station series homogenization 

This paper uses the RHtestV4 software package to test and adjust the SSR station data for homogeneity 

(http://etccdi.pacificclimate.org/software.shtml) (Wang and Feng, 2013). The package is based on the 

empirical penalty functions PMF (Wang, 2008b) and PMT (Wang, 2008a; Wang et al., 2007) for the 

homogenization test. It takes into account the lag-1 autocorrelation of the time series. It embeds a multiple 215 

linear regression algorithm to significantly reduce the problem of an unbalanced distribution of pseudo-

identification rates and test efficacy. Also, RHtestV4 uses the QM algorithm (Vincent et al., 2012; Wang 

et al., 2010) and Mean-Adjustments to adjust the identified change points. 

The specific steps are as follows: 

1) Building the reference series  220 

a. We processed the data from all stations series (715) into the annual first differences (FD) series 𝑒𝑖 

(Eq. (1)) (Peterson et al., 1998).  

b. We calculated the correlation of the annual FD series between the series from the potential reference 

pool and the candidate stations.  

c. We calculated the distance between the potential reference pool stations and candidate stations. 225 

d. We selected potential stations according to the correlation coefficient (CC >= 0.6) between the series 

from potential reference pool and candidate stations. And the potential stations also satisfy the limits in 

distances (<= 500km) between the potential pool stations and candidate stations.  

e. We obtain the reference FD series (𝑅𝑒) based on the m potential reference series (Pe𝑖) and the CCs 

(𝑐𝑖) between the potential reference series (Pe𝑖) and candidate stations series (Eq. (2)).  230 

f. The synthesized reference FD series (𝑅𝑒) (Eq. (2)), plus the average of all potential reference series 

(�̄�), yields the final annual reference series (𝑅) (Eq. (3)). 

𝑒𝑖 = 𝑥𝑖 − 𝑥𝑖+1 

i=1, 2, …, n-1 
(1) 

𝑅𝑒 =
∑ 𝑃𝑒𝑖 ∗ 𝑐𝑖

2𝑚
𝑖=1

∑ 𝑐𝑖
2𝑚

𝑖=1

 (2) 

𝑅 = 𝑅𝑒 + 𝑅 (3) 

𝑒𝑖 Annual FD series, 

𝑥𝑖 Raw observational station SSR in the year i, 

𝑅𝑒  Final reference series, 235 
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𝑃𝑒𝑖  Potential reference series, 

𝑐𝑖  CC between the potential reference series and the candidate stations series. 

2) Testing and adjusting the candidate series 

The homogenization test algorithm used in this paper is the PMT. This method is a reference series-

dependent test for a normalized candidate series. It assumes that the linear trend of the time series is zero 240 

and uses the degree of mean deviation at different points in the series to find change points. Furthermore, 

it eliminates the effect of different sample lengths on the test results. At the same time, the method 

introduces an empirical penalty factor, which effectively improves detection. We used the PMT to test 

the homogeneity of the candidate series based on the reference series established in 1). We then adjusted 

the statistically significant (p>0.05) changepoints obtained using the mean adjustment method (p>0.05). 245 

We homogenize the monthly series for 66 stations (see Figure S1 in the SM). 

3.1.3 Integration and consolidation 

As can be seen from Figure 1, the candidate stations (487) are relatively sparse. To better adapt deep 

learning methods for the dataset reconstruction later, we adjusted, added and integrated station series 

based on the results of homogenized data from other scholars: 1) We added stations with more than 10a 250 

overall (1955-2018) records but no more than 15a during the 1971-2000 period, and removed those 

stations that were clearly inhomogeneous (25) and some years of the station (3); 2) We subsequently 

integrate monthly SSR series for 116 stations based on the results of homogenization by other scholars 

(China (56), Japan (8), Europe (2) and Italy (50)). After the above steps, we end up with a homogenized 

dataset containing 944 stations (Figure 3). The details of the processing and classification are shown in 255 

Table S2 (see in the SM). 

3.2 CNN model reconstruction methods  

The CNN deep learning model network architecture uses a U-shaped structure similar to the U-net 

(Ronneberger et al., 2015). The advantage of using this model is: 1) both high and low-frequency 

information of the picture can be retained, and when reconstructing the SSR data, not only the grid point 260 

information close to the missing measurement point will be considered, but also information from more 

distant locations (which may be remotely correlated with that missing measurement point); 2) This makes 

the model convergence faster and more economical in terms of computational resources. The upper part 

of the U-shaped structure, which has no down samples or a low number of down samples, represents the 
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high-frequency information of the graph. These sections contain much of the detail in the graph and the 265 

relationships between similar grid points are conveyed by this section. The lower half of the U-shaped 

structure is down-sampled more often and represents the lower frequency information of the graph. The 

global radiation of a wide range of undulations is transmitted by it, and then the information at the various 

levels of the U-shaped structure is connected and transmitted through the skip connection, allowing the 

whole network to remember all the information of the picture very well. The model uses nearest 270 

neighbour upsampling in the decoding phase, the skip links will concatenate two feature maps and two 

masks as the feature and mask inputs for the next part of the convolution layer. The input to the last part 

of the convolution layer will contain the original input image concatenated with the holes and the original 

mask, allowing the model to replicate the non-hole pixels. The complex and variable nature of the sea-

land boundary then has a significant impact on the reconstruction, when we reconstruct the global land 275 

SSR data. Therefore, we use partial convolution at the image boundaries with a suitable image padding, 

ensuring that the padding content at the image boundaries is not affected by values outside the image. 

The deep learning models' convolutional layers and loss functions have been described in SM. 

We further reconstruct a long-term (1955-2018) global SSR anomalies dataset (SSRIH20CR) by using 

improved partial CNN deep learning methods based on a “perfect” dataset. CNN consists of three parts. 280 

A convolutional layer to reduce the number of weights by extracting local features, a pooling layer to 

reduce peacekeeping and prevent overfitting, and a fully connected layer to output the desired result. In 

this paper, a modified CNN network is used to model the reconstruction of the SSR data, with the 

convolutional layer replaced by a partial convolution method and mask update. This method is the latest 

in image restoration effects and can restore irregular holes, an advantage over other image restoration 285 

methods that can only restore rectangular holes. Therefore, this paper uses the modified CNN model  

(Kadow et al., 2020) to recover the missing part of the global terrestrial SSR (except Antarctica). The 

specific reconstruction steps and processes are as in Figure 4. 

3.2.1 Data pre-processing 

The homogenized station data is converted to grid box anomalies using the Climate Anomalies Method 290 

(CAM) (Jones et al., 2001). CAM is a commonly used method for converting station anomaly data to 

gridded data. We divide all global areas into a 5° × 5° grid, after which we calculate the SSR anomalies 

(relative to 1923-2020) within the grid box by averaging the anomalies of all stations (at least 1 station 
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in it). If there are more than one site exists in the same grid box, the record length of this grid box is the 

total length of all sites in that grid box. Finally, we removed the values that were more than five times 295 

the standard deviation of the SSR anomaly time series after gridding. SSRs are all processed as daily 

average anomalies, i.e., monthly anomalies divided by 30 (each month is approximated as 30 days). We 

multiplied all the values by 30 again when the reconstruction is complete. The global land (except for 

Antarctica) distribution and coverage of SSRs after gridding are shown in Figure 5 a, b. 

As seen in Figure 5a, the SSR is spatially sparsely distributed across South America and Africa. As 300 

shown in Figure 5b, SSR coverage increased yearly from 1950 until the mid-1970s, when it slowly 

decreased. In 2013, the coverage rate decreased sharply due to untimely data submission. Considering 

the SSR coverage above, we only kept the years (1955-2018) with data coverage of more than 8% of 

global land (except for Antarctica) areas. 

Comparisons show that the ERA5 has high spatial resolution and relatively reliable performance in 305 

the temporal variations and long-term trends (Liang et al., 2022; Jiao et al., 2022). To obtain a higher 

data coverage and ensure that the AI model runs well, we used the ERA5 to fill the SSR of homogenized 

global gridded SSR in the Antarctic and ocean areas. However, if we use the SSR of ERA5 to directly 

fill the SSR of homogenized global gridded SSR (SSRIHgrid) in the Antarctic and on the ocean areas, 

then the relatively weaker ocean SSR variations (variabilities, decadal changes, trends, etc.) from ERA5 310 

will inevitably introduce certain systematic biases in land SSR reconstruction due to the SSRs have the 

lower coverage on the land. Therefore, we designed an algorithm to avoid excessive diffusion of SSR 

system bias in terrestrial areas: we first calculated the ratios 𝛾𝑖 (i=1, 2, 3, ...., n) between the SSR from 

ERA5 and from SSRIHgrid on the land in all n years. For a single grid box, the 𝛾𝑖 have small changes 

and are regarded as a constant 𝛾𝑚𝑒𝑑𝑖𝑎𝑛(Eq (4)), and the 𝛾𝑚𝑒𝑑𝑖𝑎𝑛  vary by latitude and longitude both on 315 

the marine and the land areas. We then extrapolated the 𝛾𝑚𝑒𝑑𝑖𝑎𝑛 for all the grid boxes along the land 

and sea boundaries. If there is no observation there, then the adjacent ocean ERA5 SSR is used to take 

its place after it is adjusted according to the differences between the SSR variations (represented by the 

linear trends) for the different underlying surfaces (Eq (5).  

𝛾𝑚𝑒𝑑𝑖𝑎𝑛 = 𝑀𝑒𝑑𝑖𝑎𝑛(
𝑂𝐵𝑆𝑖_𝑙𝑎𝑛𝑑
𝐸𝑅𝐴5𝑖_𝑙𝑎𝑛𝑑

), (4) 

𝑂𝐵𝑆𝑖_𝑂&𝐿(𝑙𝑎𝑛𝑑) = 𝐸𝑅𝐴5𝑖_𝑂&𝐿(𝑂𝑐𝑒𝑎𝑛) ∗ 𝛾𝑚𝑒𝑑𝑖𝑎𝑛 ∗
𝑇𝑂
𝑇𝐿
, (5) 
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𝑖 = 1,2,3. . . . . . , 𝑛 

𝛾median: The median value of the ratios of OBS and ERA5 land SSR series, 320 

𝑂𝐵𝑆𝑖_𝑙𝑎𝑛𝑑: Land SSR for the year i from SSRIHgrid in a single grid, 

𝐸𝑅𝐴5𝑖_𝑙𝑎𝑛𝑑: Land SSR for the year i from ERA5 in a single grid, 

𝑂𝐵𝑆𝑖_𝑂&𝐿(𝑙𝑎𝑛𝑑): Land SSR along the sea-land boundary (land) for the year i from SSRIHgrid, 

𝐸𝑅𝐴5𝑖_𝑂&𝐿(𝑂𝑐𝑒𝑎𝑛): Ocean SSR along the sea-land boundary for the year i from ERA5, 

𝑇𝑂: Trend of ERA5 SSR on ocean areas in all n years, 325 

𝑇𝑙: Trend of ERA5 SSR on areas in all n years. 

3.2.2 AI Model reconstruction 

We use a server (configured with processor Intel(R) Core (TM) i7-8700 CPU @ 3.20GHz 3.19 GHz, 

RAM 32G, 64-bit OS, GPU model 516.94, NVIDIA GeForce 1080T version, Python 3.9.12 64-bit, 

CUDA 10.1) for AI models training. The specific training steps are as follows:  330 

1) A total of 768 missing value masks (monthly masks between 1955 and 2018) were prepared for 

training and validation using ‘1’ for existing and ‘0’ for missing values;  

2) The 20CRv3/CMIP6 training set (monthly values between 1955 and 2015/2014) and missing value 

masks are fed into the 20CR-AI /CMIP6-AI model for training;  

3) We perform 1,500,000 training sessions with an interval of 10,000 sessions for the training output 335 

model.  

Afterwards, the two AI models are validated against the root mean squared error (RMSE)/CCs of the 

reconstructed SSRs (SSR20CR/SSRCMIP6). The validation set SSRs, and the optimal number of training 

cycles is 1,100,000 (see Figure S2, Figure S3 and Figure S4 in the SM). The initial hyper-parameters of 

the model are set as follows; learning rate of 2e-4, batch size of 16 and learning finetune of 5e-5. 340 

The training result models generated by the different AI models are obtained separately for the 

different training sets. The model is first used to reconstruct a reanalysis validation set with the same 

missing value mask as the original observation dataset. This is followed by a validation of the 

reconstruction against the original reanalysis dataset (calculation of CC and RMSE) to understand the 

discrepancies in the model reconstruction. 345 
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4 Data homogenization and verification 

We homogenized the original monthly stations/gridded SSR time series (SSRIHstation /SSRIHgrid) using 

the method in section 3.1.2. We selected six continental regions, excluding Antarctica and the Arctic, 

from the eight continents of the world defined by Xu et al. (Xu et al., 2018) (Asia, Africa, South America, 

Europe, North America, Australia, Antarctica and the Arctic). The decreasing trend of the SSRIHgrid is 350 

consistent with the original gridded SSR series (SSRIgrid) during 1955-1991 while the increasing trend 

during 1991-2018 is weaker. At the regional scale, the SSRIHgrid has a generally similar variation to the 

SSRIgrid, and the SSRIHgrid is usually more representative of climate change than SSRIgrid at individual 

stations. 

Figure S5 (see in the SM) illustrates the long-term variations of global (Figure S5 (a) in the SM) and 355 

continental land SSR (Figure S5 (b) in the SM) from the SSRIgrid and SSRIHgrid (except for Antarctica) 

during 1955-2018. The most prominent change revolves around the adjustment around 1992: the SSR 

anomalies were systematically adjusted upward from 1987 to 1992, while the SSR anomalies were 

systematically adjusted downward from 1993 onwards. Thus, there is a significant decreasing trend for 

both global land SSRIgrid (-1.995±0.251 W/m2 per decade) and global land SSRIHgrid (-1.776±0.230 360 

W/m2 per decade) (except for Antarctica) from 1955 to 1991. While the increasing trend of the global 

land SSRIHgrid from 1991 to 2018 is 0.851±0.410 W/m2 per decade, slightly smaller than the increasing 

trend of the SSRIgrid (0.999±0.504 W/m2 per decade). It is worth noting that 1992 happened to be the 

second year of the eruption of Mount Pinatubo, and the homogenized SSR data integrated in this paper 

may be affected by this event. But overall, the homogenization also has limited effects on the global SSR 365 

variations from Figure S5 (see in the SM), which is consistent with the influence of data homogenization 

on a wide range of surface air temperatures (Brohan et al., 2006; Xu et al., 2013). 

At the regional scale, the differences between the SSRIHgrid and SSRIgrid are more pronounced in Asia 

and Europe (see Figure S5(b) in the SM). Asia’s homogenized SSR show that the regional average SSR 

has been declining significantly over the period 1958-90; this dimming trend mostly diminished over the 370 

period 1991-2005 and was replaced by a brightening trend in the recent decade. The SSRIHgrid in Asia is 

higher than the SSRIgrid from 1985 to 1990 and lower than the SSRIgrid from 2012 to 2015. The SSRIHgrid 

shows a more moderate short-term increase in Europe from 1960 to 1980. Note also that the Australian 

raw data prior to 1988 were artificially detrended because at the time the Australia Weather Service was 
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afraid that the instruments would drift. Therefore, they detrended them and unfortunately did not store 375 

the raw data, and the SSR evolution in Australia is artificial with no trend (Wild et al., 2005). In addition, 

the SSRIstation and SSRIHstation comparisons for all 66 stations are shown in Figure S1 (see in the SM). 

5 AI reconstruction and comparison 

5.1 Training of the AI model 

We produce two (20CRv3 /CMIP6) separate training and validation sets: we select the 1th member 380 

data of the reanalysis data and the model data, respectively, as the validation set, and the remaining 79 

(124) ensemble members as the training sets, where each ensemble member included 732 (720) months 

of SSR data. Each validation set included 732 (720) samples, while the training sets contained 57828 

(89280) ensemble members. All the above data, including the in-situ observations, are then resampled to 

monthly anomalies of 5° × 2.5°. 385 

We reconstruct the SSR of 20CRv3/CMIP6 with missing values based on 20CRv3 /CMIP6 datasets using 

the method in section 3.2 and obtain two reconstructions, SSR20CR and SSRCMIP6, respectively. The SSR 

of 20CRv3/CMIP6 with missing values uses the SSRIHgrid mask between 1955 and 2015/2014. We 

compare the global land (except for Antarctica)/regional annual anomalies variation of SSR20CR/SSRCMIP6. 

The results show that SSR20CR is significantly more consistent with the validation set than SSRCMIP6. 390 

Figure 6(a) shows that the RMSE/CC of the SSR20CR (0.25 W/m2 /0.97 W/m2) are smaller/larger than 

those of SSRCMIP6 (0.52 W/m2 /0.93 W/m2) with the original 20CR/CMIP6 dataset. The 20CR-AI 

model has a better reconstruction ability for SSR at the global land (except for Antarctica) scale. The 

RMSEs of the SSR20CR (SSRCMIP6) are 1.46 (2.41) W/m2, 1.11 (1.83) W/m2, 2.22 (2.60) W/m2 and 1.29 

(2.24) W/m2 in North America, Europe, Asia, and Northern Hemisphere, whereas these values are 1.12 395 

(1.77) W/m2, 0.62 (1.60) W/m2, 1.88 (1.84) W/m2 and 0.77 (1.68) W/m2 in South America, Africa, 

Australia, and Southern Hemisphere concerning the original 20CR/CMIP6 dataset, respectively. In 

other words, the RMSEs of the SSR20CR are smaller than those of SSRCMIP6 for the original 

20CR/CMIP6 dataset except for Australia. In addition, the CCs of the SSR20CR (SSRCMIP6) are 0.96 (0.83) 

W/m2, 0.96 (0.99) W/m2, 0.89 (0.67) W/m2, 0.93 (0.97) W/m2, 0.94 (0.93) W/m2, 0.94 (0.92) W/m2, 0.94 400 

(0.88) W/m2 and 0.90 (0.82) W/m2 in North America, Europe, Asia, Northern Hemisphere, South 

America, Africa, Australia, and Southern Hemisphere with respect to the original 20CR /CMIP6 
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dataset, respectively. That is, the CCs of the SSR20CR are larger than those of SSRCMIP6 to the original 

20CR /CMIP6 dataset except for Europe.  

Based on the above comparison, the higher uncertainty for CMIP6 model output possibly biases the 405 

CMIP6-AI method. Thus, the accuracy of the SSR20CR is higher than that of the SSRCMIP6 at both global 

land (except for Antarctica) and regional scales. Therefore, we choose the reconstruction results of the 

20CR-AI model as the final AI reconstruction dataset, and subsequent analysis in the following sections 

is only based on this dataset. 

5.2 Comparison of the spatial and temporal variation characteristics 410 

We investigate the long-term trends and spatial and temporal variation of the SSRIH20CR, compare the 

differences between the SSRIH20CR and SSRIHgrid, and suggest: the area and magnitude of the high and 

low centres of the SSRIH20CR are the same as those of the SSRIHgrid; the results of the global land (except 

for Antarctica) reconstruction are consistent with "dimming and brightening"; the global dimming is 

primarily dominated by decreasing trends in Asia, Europe Africa and North America, whereas Europe 415 

and North America are contributors to the increasing trends. 

Figure 7 shows the spatial distribution of the SSRIHgrid and SSRIH20CR for the three months (July 1960, 

July 1980, and July 2000). Figure S6 (see in the SM) displays the spatial distribution of annual SSRIHgrid 

and SSRIH20CR from 1955 to 2018. Figure 7 also shows the area and the magnitude of the high and low 

centres in the SSRIH20CR are the same as in the SSRIHgrid. The SSRIH20CR is mainly positive anomalies 420 

in Africa and the Eurasian continent in July 1960, especially in India and the Middle East. Afterwards， 

India showed a continuous and steady decline in SSR. This confirms the well-known phenomenon of 

global dimming over India (Wild et al., 2009; Soni et al., 2016; Soni et al., 2012; Padma Kumari et al., 

2007; Kambezidis et al., 2012). In Australia, the SSRIH20CR is dominated by negative anomalies in July 

1980 and positive anomalies in July 1960 and July 2000. In Greenland, the SSRIH20CR shows a large 425 

positive anomaly during three months. In northern Russia, there is a high value in July 2000. The 

reconstruction can better reflect the anomaly distribution of observation information, and the grid boxes 

with the missing values are infilled and reconstructed, which has high reliability.  

Figure 8 illustrates global land (except for Antarctica) annual anomalies variation and long-term trend 

of the SSRIH20CR for the period of 1955-2018, 1955-1991 and 1991-2018. Also, we compare the 430 

differences between the SSRIH20CR and SSRIHgrid. The minimum value of the SSRIH20CR occurred in 
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1991 (-2.411 W/m2). The decreasing trend of the SSRIH20CR from 1955 to 1991 (-1.276±0.205 W/m2 per 

decade) is slightly lower than that of the SSRIHgrid (-1.776±0.230 W/m2 per decade). After that, the 

SSRIH20CR turns to an increasing trend of 0.697 ± 0.359 W/m2 per decade from 1991 to 2018. This 

suggests that the difference between SSRIH20CR and SSRIHgrid may be caused by the results observed in 435 

limited data coverage (such as in Africa and North America) (Figure 9). After homogenization and 

reconstruction, the trend (-1.276 W/m2 per decade) from 1955 to 1991 corresponds to an overall reduction 

of -4.6 W/m2 over the dimming period, while that (0.697 W/m2 per decade) from 1991 to 2018 correspond 

to an overall increase of 2.0 W/m2 over the brightening period. This is in amazing agreement with the -4 

W/m2 for the dimming period and the 2 W/m2 for the brightening period based on an overall surface 440 

energy budget assessment ((Wild, 2012) see their Figure 1). Also, similar conclusions (incomplete 

coverage of observational data lead to an underestimation of global warming trends) have been confirmed 

in global warming research (Gulev et al., 2021; Li et al., 2021).  

Figure 9 demonstrates the long-term annual anomaly variations of the SSRIH20CR in different regions 

and its results compared to the SSRIHgrid. The SSRIH20CR shows a similar annual anomaly variation to 445 

the global land (except for Antarctica) average trend in North America and Asia, reaches a minimum in 

the late 1970s or early 1990s, and follows a moderate reversal. In Europe, the SSRIH20CR shows a 

decrease (-2.180 ± 1.866 W/m2 per decade) between 1963 and 1978 before turning to brightening (1.081 

± 0.312 W/m2 per decade). In South America and Australia (Southern Hemisphere), the SSRIH20CR 

shows no significant variation. In Africa, the SSRIH20CR has a dimming trend (-1.506 ± 0.496 W/m2 per 450 

decade) from the 1950s to the 1990s, after which it remains levelled off (0.340 ± 0.998 W/m2 per decade). 

The SSRIH20CR shows a decreasing trend (-1.457 ± 0.246 W/m2 per decade) until the 1990s in the 

Northern Hemisphere and a brightening (0.887 ± 0.415 W/m2 per decade) afterwards. The annual average 

anomaly variations in regions and globally show that Asia, Africa, Europe and North America are the 

four contributors to the global dimming, while Europe and North America are two major contributors to 455 

the “brightening”. This is in general agreement with the results obtained by previous machine learning 

(Yuan et al., 2021). In addition, the discrepancy between the SSRIH20CR and SSRIHgrid is more significant 

in low-coverage areas (right) than in high-coverage regions (left). It is particularly pronounced before 

1980 and in South America. This suggests that the limited surface observations are not representative of 

the continental variation in SSR. 460 
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To sum up, the AI reconstruction of this paper helps to decrease the uncertainties in SSR variations in 

both spatial scales. Further, it shows that there may be a sampling error in the variations of the global 

land (except for Antarctica) and regional SSR before reconstruction, leading to a systematic deviation in 

the long-term trend of global land (except for Antarctica) or regional SSR. 

6 Data availability 465 

Both the SSRIHgrid (the homogenized monthly gridded SSR data over 1923-2020) and the SSRIH20CR 

(the monthly 20CR-AI model reconstructed SSR data for 1955-2018) are currently publicly available on 

the figshare website under DOI at https://doi.org/10.6084/m9.figshare.21625079.v1 (Jiao and Li, 2023). 

These datasets are also available at http://www.gwpu.net for free. 

7 Conclusion 470 

In this study, we integrate global station observations based on the raw observational SSRs from GEBA 

and WRDC, combined with existing homogenized SSR datasets from other scholars. Also, we 

homogenize the globally distributed station data using the RHtestV4 software package. An improved 

CNN deep learning algorithm is subsequently used to reconstruct the SSR anomalies. Thus, a 

reconstructed SSR anomaly dataset, SSRIH20CR, is obtained based on training sets (20CRv3), for the 475 

years 1955-2018, with a resolution of 5°×2.5°. The main results are as follows: 

1) The first integrated and homogenized global SSR monthly dataset is developed, which contains 944 

stations in total and covers the longest periods (from the 1920s to recent years). A 5°×5° grid boxes 

version of the monthly SSR anomalies dataset is derived.  

2) This paper develops 5°×2.5° full-coverage monthly land (except for Antarctica) SSR anomalies 480 

reconstructed datasets based on the above observations, using the 20CRv3 to train the AI model. 

Comparative validations /evaluations show that the SSRIH20CR provides a reliable benchmark for global 

SSR variations. 

3) On average, the global annual SSR variations based on the SSRIHgrid are not significantly different, 

except that the increasing (brightening) trend after 1991 is a little smaller for the latter. The short-term 485 

brightening SSR in Europe from the 1970s- to the 1980s disappear at the regional scale. At the same time, 

the brightening SSR after the 1990s in Asia slowed or postponed.  
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Captions of tables and Figures 

Table 1: List of information on the various types of data used in this paper. 715 

 

Figure 1: Flowchart of quality control (QC) (first step), homogenization (second step) and integration 

(third step). 

 

Figure 2: Spatial distribution of candidate stations (“*”) and added stations (“+”). The different colour 720 

bars represent the length of the station record in months (Units: Month). 

 

Figure 3: Spatial distribution of stations after homogenization (Units: Month), different colours 

represent the length of station records in months 

 725 

Figure 4: Flowchart of AI reconstruction. 

 

Figure 5: (a) Spatial distribution of 5°x5°grid boxes (SSRIHgrid) obtained interpolating the 

homogenized global land (except for Antarctica) SSR series. The different colours represent the length 

(the sum of all records) of the station record, Units: Year. (b) Grid box coverage for the homogenized 730 

global land (except for Antarctica) SSR (SSRIHgrid) except for Antarctica. 

 

Figure 6: Reconstruction capabilities of the AI model. 

 

Figure 7: Spatial distribution of the SSRIHgrid (a1-3) and SSRIH20CR (b1-3) in typical months. 1-3 is 735 

July 1960, July 1980, and July 2000, respectively. 

 

Figure 8: Global land (except for Antarctica) time series of the annual anomaly variations SSR (relative 

to 1971-2000) before/after reconstruction.  

 740 

Figure 9: Same as Figure 8, but for regional annual anomaly variations.  
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Table 1: List of information on the various types of data used in this paper 

 Abbreviation Resolution  Time Reference 

In-situ-Raw 
GEBA (Station) Monthly 1922-2020 (Wild et al., 2017) 

WRDC (Station) Monthly 1964-2017 (Tsvetkov et al., 1995) 

In-situ-Homo 

China (Station) Monthly 1950-2016 (Yang et al., 2018b) 

Japan (Station) Monthly 1870-2015 (Ma et al., 2022) 

Europe (Station) Monthly 1922-2012 (Sanchez-Lorenzo et al., 2015) 

Italy (Station) Monthly 1959-2016 (Manara et al., 2016; Manara et al., 2019) 

Reanalysis / 

Model 

ERA5 (Grid) 
Monthly/  

0.25°×0.25° 
1950-2020 (Hersbach et al., 2020) 

20CRv3 (Grid) 
Monthly/  

(0.7°×0.7°/1°×1°) 
1940-2015 (Slivinski et al., 2019) 

CMIP6 (Grid) Monthly/- 1940-2014 (Eyring et al., 2016) 

 745 
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Figure 1: Flowchart of quality control (QC) (first step), homogenization (second step) and integration (third 

step). 
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Figure 2: Spatial distribution of candidate stations (“*”) and added stations (“+”). The different colour bars 

represent the length of the station record in months (Units: Month). 
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 755 

Figure 3: Spatial distribution of stations after homogenization (Units: Month), different colours represent the 

length of station records in months 
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Figure 4: Flowchart of AI reconstruction.  760 
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Figure 5: (a) Spatial distribution of 5°×5°grid boxes (SSRIHgrid) obtained interpolating the homogenized 

global land (except for Antarctica) SSR series. The different colours represent the length (the sum of all 

records) of the station record, Units: Year. (b) Grid box coverage for the homogenized global land (except 765 

for Antarctica) SSR (SSRIHgrid) except for Antarctica. 
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Figure 6: Reconstruction capabilities of the AI model. (a) Global land (except for Antarctica) means time-770 

series analysis and AI model reconstruction evaluation. The red line is the SSR of the reconstruction based 

on the 20CR-AI /CMIP6-AI model (SSR20CR /SSRCMIP6); The grey line is the masked datasets with missing 

values of the SSRIHgrid. The solid black line is the 20CR and CMIP6 validation set (the SSR from the 1th 

member of 20CRv3 /CMIP6). (b) Comparisons of the SSR20CR (columns 1, 3) /SSRCMIP6 (columns 2, 4) with 

the SSR from the 20CR and CMIP6 validation set. Colour bars represent counts with the same values for 775 

both. Figures also show the SSR20CR (SSRCMIP6) correlation coefficient (CC), root mean squared error (RMSE) 

and fitting equation compared to the original dataset in different regions. 
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Figure 7: Spatial distribution of the SSRIHgrid (a1-3) and SSRIH20CR (b1-3) in typical months. 1-3 is July 780 

1960, July 1980, and July 2000, respectively. 
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Figure 8: Global land (except for Antarctica) annual SSR anomaly variations (relative to 1971-2000) 

before/after reconstruction. The Black solid line represents the SSRIHgrid annual anomalies. The solid blue 785 

line represents the SSRIH20CR annual anomalies. The histograms represent the decadal trends of the 

SSRIHgrid /SSRIH20CR (unit: W/m2 per decade) and their 95% uncertainty range from 1955 to 1991, 1991-

2018 and 1955-2018.  
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Figure 9: Same as Figure 8, but for regional annual anomaly variations. The green colour filling diagram 

represents the variation in grid box coverage (before reconstruction).  
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